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EXECUTIVE SUMMARY

This deliverable describes the quality estimation for the translation models described in D4.3
(translation models, final version) and evaluated in D1.4 (report on final evaluation study) of the
EASIER project. In the signed-to-spoken models, sign language is represented as European
Meta Sign Language (EMSL) glosses produced by a sign spotter (described in D3.4). In the
other direction, sign language output is represented as skeletal pose sequences.

Supervision for training the quality estimation (QE) models comes from the human judgement
scores collected in the final evaluation of the translation models (see D1.4). The QE model pre-
sented in this work is a very simple approach, but even so, this model achieves almost perfect
Pearson correlation with the human scores. This is due to the fact that the evaluation scores of
the automatic translations and the human-translated references are almost completely disjoint
in a bimodal distribution: there is a large gap in quality and therefore, even a very simple QE
model has no problem distinguishing automatic from human translations.

As a conclusion, we propose that instead of augmenting the QE model, future work should
focus on improving the quality of the automatic translations.
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1 INTRODUCTION – QUALITY ESTIMATION IN MACHINE TRANS-
LATION

QE has always been an important part of machine translation (MT) research, with the goal to
ensure the reliability and correctness of the automatically generated translations (Specia et al.,
2018). As opposed to quality evaluation, QE usually does not rely on a reference and can be
used in production to filter out bad translations on the fly.

QE covers a wide range of approaches, from language-specific, linguistically informed meth-
ods (Felice and Specia, 2012; Specia et al., 2013; Martins et al., 2017) to language-agnostic
approaches that often rely on features from the translation model itself, such as probability dis-
tributions and cross-attention scores (Ding et al., 2021; Fomicheva et al., 2020). Furthermore,
QE models differ in terms of the level of granularity at which they predict quality, e.g. at word
(Knowles and Koehn, 2018; Ding et al., 2021; Martins et al., 2017), sentence (Specia et al.,
2013), or even document level (Soricut and Echihabi, 2010; Graham et al., 2017).

In general, approaches to quality estimation have shifted to large, data-driven, multilingual
models that perform reliable assessments, especially on sentence level (Zerva et al., 2022).

QE models are typically trained with supervision, although unsupervised approaches are also
possible (Fomicheva et al., 2020). Instead of reference translations, QE usually relies on either
human direct assessment (DA) scores or post-edits for supervised training. In this work, we
use the DA scores from the final evaluation of the EASIER translation models (see deliverable
D1.4 Report on Final Evaluation Study) for supervision.

© 2021 EASIER Consortium Page 8 of 18 Funded by the Horizon 2020
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2 QUALITY ESTIMATION FOR GERMAN-DGS AND DGS-GERMAN

QE as part of task T5.4 is limited to the language pair German – German Sign Language (DGS),
in both directions. We will give a short overview on the translation models and the human
evaluation that provided the DA scores used to train the quality estimation model.

2.1 MODELS

The models are described in detail in deliverable D4.3 EASIER Final Translation Systems V2,
but we will give a brief outline of the architectures here.

2.1.1 German-DGS

The German-to-DGS model consists of a pipeline that translates text-to-gloss and then gloss-
to-pose (Moryossef et al., 2023). The text-to-gloss component offers three alternatives:

1. lemmatiser

2. rule-based word reordering and dropping component

3. neural text-to-gloss model trained on meineDGS (Konrad et al., 2020)

For the direction German-DGS, the text-to-gloss conversion was done with the first option, the
lemmatiser. Perhaps counterintuitively, the lemmatiser was the best-performing of the three
alternatives in an interim evaluation of our translation models carried out additionally to the V1
and the final translation evaluation.

After obtaining the glosses, the gloss-to-pose component converts the glosses to a sequence of
poses via lexicon lookup. The lexical data consists of the DGS part in the sign language wordnet
(Bigeard et al., 2022), a multilingual resource where each sign is linked with at least one video
that was converted to skeletal poses with MediaPipe Holistic (Grishchenko and Bazarevsky,
2020).

In the final translation step, the poses are stitched together from the glosses obtained in the first
step. Note that the full system includes a pose-to-video step that renders the sequence with
an avatar, however, this was not used in the EASIER models presented to the evaluators (see
D1.4): The human evaluation scores for translations into DGS are based on pose sequences.

2.1.2 DGS-German

The models for the direction DGS-German are based on EMSL v2.0b, described in detail in
deliverable D3.4 EMSL Representation v2. A sign spotter labels a given sign language video

© 2021 EASIER Consortium Page 9 of 18 Funded by the Horizon 2020
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with glosses for the signs that it recognises. These glosses then serve as input to a neural MT
system that translates them into German.

The spotter for the evaluated DGS-German model produces glosses in both British Sign Lan-
guage (BSL) and DGS, as it was trained on the public part of the MeineDGS corpus (Konrad
et al., 2020) and the BOBSL dataset (Albanie et al., 2021). The translation model trained on
the output of this combined spotter was slightly better than the model trained on output of a
DGS-only spotter, therefore, this was the model that was presented to the raters for the final
evaluation in D1.4.

It is, however, important to note that the quality of this translation model is very low, the glosses
provided by the spotter are sparse and also not always related to the actual content of the
utterance. The neural translation model trained on this data therefore mostly learns to invent
content, i.e. it produces more or less fluent output in German, but the content is unrelated to
the input (so-called “hallucinations").

2.2 HUMAN JUDGEMENT SCORES FOR SUPERVISION

The human evaluation scores used as labels to train the quality estimation model come from the
final evaluation study in EASIER, described in D1.4. For the directions German-DGS and DGS-
German a total of 5 and 4 evaluators, respectively, contributed the scores in direct assessment.

Evaluators blindly scored automatic and human translations. For the German-DGS direction,
the human reference translations were presented as skeletal pose sequences in order to avoid
potential differences in scoring due to the contrast between poses and a real person signing.

Evaluators scored the content of the automatic and human translations on a scale from 1 (no
meaning preserved) to 100 (perfect meaning).

Table 2.1 contains the results of the evaluation study for German-DGS and DGS-German.
Translations in the direction signed-to-spoken were of notably low quality. The relatively low
score for the human reference translations in the direction German-DGS is probably due to the
fact that the translations were represented as skeletal pose sequences instead of the original
videos.

direction system human translations automatic translations

German-DGS text-lemma-pose 76.077 10.341
DGS-German video-EMSL-text 85.842 0.286

Table 2.1: Results of the final evaluation study for German-DGS and DGS-German transla-
tions.

2.3 QUALITY ESTIMATION

We train a simple quality estimation model based on a collection of simple features. The scores
from the human evaluation described in the previous section provide the labels for the super-
vised training of the quality estimation.

© 2021 EASIER Consortium Page 10 of 18 Funded by the Horizon 2020
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2.3.1 Features

We calculate the following features to as indicators of quality:

Fluency For the signed-to-spoken translations, where German is the target language, we use
a multilingual autoregressive language model based on GPT3 (Shliazhko et al., 2022) to score
the translations with perplexity. The translation model generally hallucinates the same few
sentences, independent of the input, and even though unrelated in content, those sentences
are for the most part perfectly fluent, see Fig. 2.1. Furthermore, there is some indication that
language models score fluent generated text better in terms of perplexity than human-written
text (Gehrmann et al., 2019).

Figure 2.1: Perplexity Scores on German translations (DGS-German).

Adequacy For the signed-to-spoken direction, we calculate adequacy in terms of lexical
overlap between EMSL glosses and lemmatised German output. We use two alternative ap-
proaches: a) string overlap and b) cosine similarity. Option a) is of limited use: the actual
lexical overlap is 0 for most samples, both the automatic and the human translations, since
EMSL is generally sparse, the generated glosses often do not match the content, and some of
the glosses are English lemmas (BSL). Option b) is slightly more informative, since semantically
similar words will still count and we can compare German and English word embeddings. We
use the word embeddings released by Facebook Research (MUSE)1 (Conneau et al., 2018).
These embeddings have been aligned across languages, i.e. English and German words with
similar meanings should have similar embeddings. For both options a) and b), overlap is cal-
culated in terms of F1 score, and for option b), we use a similarity threshold of 0.6 to count two
lemmas as a match. Figure 2.2 illustrates the overlap between the automatic and the human
translations with the EMSL glosses on the input side. For most EMSL-German pairs, even the
human translations, there is no overlap at all.

Number of tokens The number of tokens can be an indicative feature to distinguish an au-
tomatic from a human translation in the signed-to-spoken direction, since the model tends to

1https://github.com/facebookresearch/MUSE
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(a) F1 string overlap. (b) F1 cosine similarity overlap.

Figure 2.2: Adequacy: F1 overlap EMSL glosses and German translations.

Figure 2.3: Number of tokens in automatically generated vs. human translations.

hallucinate the same few sentences independent of the input. Figure 2.3 shows that the human
reference translations vary in length, whereas the system output consists of mostly the same
three sentence lengths.

Frames-to-token ratio For the signed-to-spoken direction, same as with the number of to-
kens in the output, the frames-to-token ratio can be indicative of an automatic translation be-
cause the model tends to generate the same few German sentences independent of the input,
i.e. there is no real correlation between input and output length.

In the direction spoken-to-signed, the model translations tend to be a bit shorter than the human
translations. See Figure 2.4 for a visualisation of the ratios for both directions.

Figure 2.5 shows a sample from our dataset for the direction DGS-to-German, on the left with
a human reference translation (’Translator-A’) and on the right with an automatic translation
(’emsl’).

© 2021 EASIER Consortium Page 12 of 18 Funded by the Horizon 2020
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(a) DGS-German (b) German-DGS

Figure 2.4: Frames per token ratios

(a) Human translation. (b) Automatic translation.

Figure 2.5: JSON samples with features for the QE model. The value in ‘text’ is a human
translation in a) from ‘translator-A’, whereas ‘text’ in b) is an automatic translation.
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(a) DGS-German: ρ 0.949 (b) German-DGS: ρ 0.914

Figure 2.6: Predicted vs. human scores

(a) DGS-German (b) German-DGS

Figure 2.7: Evaluation scores on system output vs. human reference translations

2.3.2 Regression Model

We train a non-linear regresssion model on the features outlined above with the human judge-
ment scores as supervision. The model learns to output a score between 0 and 100 that
indicates the estimated quality of the translation.

We fit a support vector regression (SVR) model with an RBF kernel to the data, without any
hyperparameter tuning, using the default values C=100, gamma=0.1, epsilon=0.1. We keep
100 records for testing, and train on the remaining data.

2.3.3 Results

To visualise the results, we plot the predicted test scores against the human test scores, and
calculate the Pearson correlation coefficient, see Figure 2.6. In both cases, we observe an
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almost complete positive correlation between predicted and human scores.

This is due to the fact that the data is almost completely disjoint, there is very minimal overlap
between the human judgement scores for the model translations and the scores for the human
reference, see Fig. 2.7.

Note that the distribution of scores on the reference translations between DGS-German and
German-DGS in Fig. 2.7 also reveals that the evaluators generally scored the German transla-
tion in the direction DGS-German higher than the corresponding DGS sequence in the German-
DGS direction, even though these are the exact same sentence pairs. This is likely due to
the fact that for the spoken-to-signed direction, the evaluators were shown poses rather than
videos.

© 2021 EASIER Consortium Page 15 of 18 Funded by the Horizon 2020
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3 CONCLUSIONS

This deliverable has presented the quality estimation models developed under EASIER. The
fact that human scores for automatic and reference translations are almost completely disjoint
has led to a very simple SVR model assigning quality scores with very high accuracy.

Instead of upgrading the quality estimation to more complex models, future work should aim to
improve the translation quality of the spoken-to-signed and signed-to-spoken models. With a
more challenging distribution of human scores, a more refined approach to quality estimation
may then be required.
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