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SLR is the task of extracting information from an input 
video containing signs, and processing this information 
into a form suitable for any downstream task, e.g. MT

End-to-end, as with most AI tasks is the preferred way. 
However, no sufficient high-quality annotated data => 

feature extractor → sign language classifier
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SLR is the task of extracting information from an input 
video containing signs, and processing this information 
into a form suitable for any downstream task, e.g. MT

Isolated SLR = each data example corresponds to a single sign; 
the objective is to learn how to classify each such sample.

Continuous SLR = data samples contain one or more signs, i.e. 
a video of continuous signing. The task is then to both locate 
and recognize signs deriving a sequence of representative 
tokens.

Train an isolated SLR ⇒
extract SL representations from the data ⇒

use these representations for downstream tasks such as SLMT



SLR model and training

Video

Keypoints

Cleaned 
keypoints

Mediapipe

Cleaning

Preprocessing

Cleaned keypoints

Embedding network

Conv-Dense 
neural network

Transformer 
neural 

network

[0.13,-1.72,...,1.22]

Embedding vector

Used as 
input for MT 

model

Gloss classification
(for training only!)

Linear classifier 
(logistic 

regression)

[0.13,-1.72,...,1.22]

Embedding vector

Gloss probabilities

VGT NGT ISL BSL

Samples (sign videos) 24967 68854 4103 2635

Classes (different glosses) 292* 458* 224** 124**

Different signers 111 82 37 48

* : only glosses with at least 20 examples
**: only glosses with at least 5 examples

Available gloss-labeled training data
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SLR: evolution since mid-term review
New model was developed*:

> powerful/efficient model architecture
> significant improvement for all SLs

Mitigating limited data set size:
• multi-language pre-training + fine-tuning for each language
• pre-training on largest dataset (NGT), 

only training classification head for target language

> improvement for ISL/BSL 
> worse for VGT

• pre-training on largest dataset (NGT),
transfer & fine tuning for target language

> Best results thus far! 

Top-5 accuracy

Very high for NGT/VGT
Embeddings contain relevant information about gloss 

Mistakes are often confusions between similar glosses

8

*: Kaggle  competition (ASL-ISLR):

> 94,000 samples with 250 glosses
> SignON ranked  16th/1165   - 86.6% accuracy 



SLR model predictions

Testing on newly recorded phrases:
• Example 1: perfectly predicted

• Example 2: 
some wrong glosses instead of missed gloss (MOETEN), 
some glosses not exact but very close

• Example 3: 
some spurious glosses (start and end of recording) 
some glosses missed (each predicted as 3rd option)

-> analyses/user feedback will be used to make further improvements 

Annotation: SCHILDPAD EERST AANKOMEN
Prediction:   SCHILDPAD EERST AANKOMEN

Annotation: WANNEER MOETEN AUTO HALEN WETEN-NIET IK
Prediction:   WANNEER WG-3 MAAR ROLLEN AUTO-RIJDEN

PAKKEN WG-3 OK WETEN-NIET IK

Annotation: WAT WILLEN ETEN JIJ
Prediction:  VINDEN WAT <missing>  <missing> JIJ ZOEKEN MOOI

Ex
am

pl
e 

1
Ex

am
pl

e 
2

Ex
am

pl
e 

3

Only glosses with predicted probability >0.4 kept
red = wrong, light green cursive = similar, dark green = correct
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Machine translation is the process 
of automatically translating content 
from one language (the source) to 
another (the target) without human 

intervention.

RBTM

Human-crafted rules.
Difficult to update.
But can work 
(relatively well) for 
low-resource 
languages.

(PB)SMT

Data-driven.
Phrase-based translation 
probabilities.
Translation and language 
models.
Decoder.
Noisy Channel.
First commercial 
breakthroughs.
Has reached its limits.

NMT - RNN

Encoder-decoder 
architecture.
LSTMs and attention 
to solve problems with 
long sequences.
One token after 
another.
Cannot be 
parallelised.

NMT -
Transformer

Self-attention.
Positional encoding.
Feed-forward networks.
Can be parallelised.
Efficient and high quality.
Mimics the way humans 
would translate a 
sentence.

NOW

BERT, ELMO, GPT, XLM, 
NLLB
Unsupervised models.
Better data preprocessing.
Multi-lingual, multimodal 
models.

Pay more attention to 
linguistics.
Control bias.



Machine Translation Module
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[1] Camgöz, N. C., Saunders, B., Rochette, G., Giovanelli, M., Inches, G., Nachtrab-Ribback, R., & Bowden, R. 
(2021, December). Content4all open research sign language translation datasets. In 2021 16th IEEE International 
Conference on Automatic Face and Gesture Recognition (FG 2021) (pp. 1-5). IEEE.
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Machine Translation Module
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Training and evaluation data

Text-to-text data:
- Paracrawl 7.1 (SignON spoken languages)

SL-to-text Data:
- Content4All VRT-NEWS (VGT-Dutch) [1]
- Phoenix2014T (DGS-German)

Results

Sign-to-text results

Metric / Data Phoenix2014T Content4All VRT-NEWS

BLEU 22.66 0.44

CHRF 48.58 16.5

ROUGE 43.86 8.94

Text-to-text results on Paracrawl

Metric / Data EN-GA GA-EN EN-ES ES-EN EN-NL NL-EN

BLEU 48.56 55.38 40.68 41.21 43.97 48.75

TER 0.50 0.46 0.50 0.51 0.59 0.55

[1] Camgöz, N. C., Saunders, B., Rochette, G., Giovanelli, M., Inches, G., Nachtrab-Ribback, R., & Bowden, R. 
(2021, December). Content4all open research sign language translation datasets. In 2021 16th IEEE International 
Conference on Automatic Face and Gesture Recognition (FG 2021) (pp. 1-5). IEEE.

SLRSign video

mBART Model

mBART 
embedding 
table

Text

Encoder

D
ecoder

Text



Machine Translation Module
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SLT results on Content4All’s VRT-NEWS VGT-Dutch dataset
- Much lower than SLT results on Phoenix2014T.
- Similar to the SLT results obtained…

- in the original paper.
- in the WMT shared task (although the dataset is not the same)  [2].

Reasons for the low results
- Insufficient amount of data (~7,000 video-sentence pairs for training).
- Phoenix2014T has a narrower domain (weather forecast), 

smaller vocabulary (~2,000-3,000 subwords).
- Moreover, glosses were used in the training.

- The domain of the datasets used for SLR and SLT do not match.

Conclusions
- Results comparable to the state of the art.
- Continuous model / architectural improvements 

[2] Mathias Müller et al. (2022) [Swiss German Sign Language -> German]
Findings of the First WMT Shared Task on Sign Language Translation (WMT-SLT22)
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Sign language synthesis (SLS) or sign language production is 
the task of generating a synthetic representation that can exhibit 
properties of a human signer and utter a message in a SL 
through the expression of manual features (hand configuration, 
location, and orientation) and non-manual features (including 
facial expressions, mouthing and mouth gestures, gaze and 
torso direction). 

- 3D animation-based approach which resolves in generating a 3D animated 
character, commonly referred to as an avatar

- a (video of a) virtual human that can be synthesised with generative AI methods 
based on real human video/image data (see the work of Stoll et al. (2020)).
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Text to AMR
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● Abstract meaning representation (Banarescu et al., 2013)
● Represents (“extracts”) meaning from a given sentence
● Lexicon is in “English” regardless of input language
● We developed EN/NL/ES → AMR multilingual (91.8% acc) and EN → AMR 

monolingual (93.6% acc) neural model (based on mBART)

Ex. The girl eats the cookies that her mother baked

1. Linearized AMR form

eat-01 girl cookie bake-01 person have-rel-role-91 mother

2. Concepts only:

eat girl cookie bake mother

1Demo: https://huggingface.co/spaces/BramVanroy/text-to-amr

https://huggingface.co/spaces/BramVanroy/text-to-amr


Look up concepts in modified SignBanks
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We modified the NGT/VGT SignBanks to include English “translations” so we can do reverse look-ups 
(English word → gloss)

● Multilingual WordNet
● ChatGPT: “context-sensitive” translations
● Similarity filtering with LABSE vectors

So continuing with English concepts extracted from AMR… eat girl cookie bake mother

3. Reverse look-up the English AMR concepts → gloss (ex. is VGT)

ETEN-A MEISJE-B KOEK-C BAKKEN-A MOEDER-A

4. Remove regional identifier

ETEN MEISJE KOEK BAKKEN MOEDER



Filled with sign animations

Phonetic
Representation

BML

DDBB

SignON Synthesis Pipeline

System 1 - Data Generation System 2 - Data Realisation

○ Capture and edit sign animations
○ Obtain sign language animations

○ Render scene to be used in the mobile app
○ 3D engine to animate a virtual avatar

T5.2 T5.1, T5.4, T5.5
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Phonetic Representation                BML

Current Overview
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Top-to-bottom Synthesis Strategy

❖ Top: sign animations

❖ Bottom: spatial behaviours

VGT

NGT
Any 
SL

Extensive work is 
being done to 

support all possible 
base behaviours

High level 
of control

Handshape: “finger2”

Handshape: “finger23”

This encoding is language 
independent. Meaning it can be used 

for any SL if the data exist
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Focus Tasks
Top-to-bottom Synthesis Strategy

❖ Top: sign animations

❖ Bottom: spatial behaviours

Automatic estimation of NMFs

Edition of NMF behaviours

Exportability of final animation

MFs edition with IK solvers

-
-
-
-

Substantial work on supporting 
available datasets in HamNoSys 

and SiGML encoding.

+ Contribution to reduce the scarcity of data 
in sign language.

+ Support of previous sign projects.
+ Support of sign language research groups.



SignON is not only about 
sign to sign translation

Objective 3: Automated Recognition

and Understanding of Signed and

Spoken/Verbal Language Input
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Automatic Speech Recognition
Current ASR Web Service

Raw 
Audio

Feature 
Extraction

Acoustic
Model

Language 
Model OutputPronunciation 

Lexicon

Hybrid ASR models
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Supported Languages
for Typical Speech

• English

• Spanish 

• Dutch

• Irish



What’s Next: End-to-end Speech Recognition Models

Audio
Data

Wav2vec 2 .0
Pretrained Model
XLS-R

Language 
Model Head

New ASR Web Service based on 
Wav2vec 2.0 and Whisper

Supported languages 
for typical speech

• English
• Spanish 
• Dutch
• Irish

Atypical Speech ASR
Finetuning with use-case 
recordings

Finetune
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SiGML to BML 
to Avatar



Thank you!
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